Базовая тактовая частота

Содержание

Как разогнать процессор и не навредить компьютеру

Базовая тактовая частота

На крышке процессора и на упаковке с ним указывается базовая тактовая частота. Это количество циклов вычислений, которые процессор может выполнить за одну секунду.

Разгон процессора, или оверклокинг, — это повышение его тактовой частоты. Если он будет выполнять больше циклов вычислений, то станет работать производительнее. В результате, например, программы будут загружаться быстрее, а в играх вырастет FPS (количество кадров в секунду).

Для оверклокинга предназначены прежде всего процессоры с разблокированным множителем. У Intel это серии К и Х, у AMD — Ryzen.

Что такое разблокированный множитель

Тактовая частота работы процессора — это произведение тактовой частоты (BCLK, base clock) системной шины материнской платы (FSB, front side bus) на множитель самого процессора. Множитель процессора — это аппаратный идентификатор, который передаётся в BIOS или UEFI (интерфейсы между операционной системой и ПО материнской платы).

Если увеличить множитель, тактовая частота работы процессора вырастет. А с ней — и производительность системы.

Если же множитель заблокирован, у вас не получится изменить его с помощью стандартных инструментов. А использование нестандартных (кастомных) BIOS/UEFI чревато выходом системы из строя — особенно если у вас нет опыта в оверклокинге.

Какие параметры важны для производительности

В BIOS/UEFI и программах для оверклокинга вы, как правило, сможете менять такие параметры:

  • CPU Core Ratio — собственно, множитель процессора.
  • CPU Core Voltage — напряжение питания, которое подаётся на одно или на каждое ядро процессора.
  • CPU Cache/Ring Ratio — частота кольцевой шины Ring Bus.
  • CPU Cache/Ring Voltage — напряжение кольцевой шины Ring Bus.

Кольцевая шина Ring Bus связывает вспомогательные элементы процессора (помимо вычислительных ядер), например контроллер памяти и кеш. Повышение параметров её работы также поможет нарастить производительность.

Набор параметров бывает и другим, названия могут отличаться — всё зависит от конкретной версии BIOS/UEFI или программы для оверклокинга. Часто встречается параметр Frequency — под ним понимают итоговую частоту: произведение CPU Core Ratio (множителя) на BCLK Frequency (базовую тактовую частоту).

Насколько безопасно разгонять процессор

В AMD прямо заявляют : «На убытки, вызванные использованием вашего процессора AMD с отклонением от официальных характеристик или заводских настроек, гарантия не распространяется». Похожий текст есть и на сайте Intel : «Стандартная гарантия не действует при эксплуатации процессора, если он превышает спецификации».

Вывод: если при разгоне что‑то пойдёт не так, ответственность за это будет лежать только на вас.

Подумайте дважды, прежде чем повышать рабочую частоту процессора: так ли важен прирост производительности, или стабильность и отсутствие рисков всё же в приоритете.

Для разгона новых процессоров Intel Core i5, i7, i9 десятого поколения с разблокированным множителем можно купить Turing Protection Plan. Он предполагает однократную замену процессора, который вышел из строя в результате оверклокинга.

Также отметим, что существует «кремниевая лотерея». Процессоры одной и той же модификации могут демонстрировать разные показатели после разгона.

Всё дело в том, что чипы не идентичны — где‑то микроскопические дефекты после нарезки кристаллов кремния более выражены, где‑то менее.

Таким образом, если вы зададите для своего процессора параметры удачного разгона, который выполнил опытный и успешный оверклокер, нет гарантии, что добьётесь тех же результатов.

Как подготовиться к разгону процессора

Для начала стоит понять, получится ли вообще безопасно разогнать систему.

Определите модель процессора

Кликните правой кнопкой по значку «Мой компьютер» («Этот компьютер», «Компьютер») и выберите пункт «Свойства». В открывшемся окне будет указана модель процессора.

Чтобы получить о нём более подробную информацию, можно установить бесплатную программу CPU‑Z. Она покажет ключевые характеристики чипсета и других компонентов, которые отвечают за производительность вашей системы.

Если у вас чипсет Intel серий К или Х либо AMD Ryzen, вам повезло. Это процессоры с разблокированным множителем, и их можно разгонять без «грязных хаков».

Повышать производительность других моделей не рекомендуем — по крайней мере, новичкам.

Все возможные нештатные ситуации, которые могут возникнуть в процессе оверклокинга, выходят за пределы этой инструкции.

Отметим, что производители регулярно выпускают патчи безопасности для программного обеспечения процессоров, защищающие от разгона. Конечно, они не дают оверклокерам годами использовать одни и те же инструменты, но также предохраняют систему от внезапного выхода из строя.

Проверьте материнскую плату

Если чипсет материнской платы не поддерживает оверклокинг, то у вас не получится изменить значение даже разблокированного множителя. Узнать модель материнской платы можно в приложении «Сведения о системе» для Windows 7 или 10. Нажмите Win + R, введите msinfo32 и посмотрите на пункты «Изготовитель основной платы» и «Модель основной платы».

Затем найдите в Сети информацию о чипсете, на котором построена плата.

  • Модели на базе чипсетов B350, B450, B550, X370, X470, X570 для процессоров AMD поддерживают разгон, на А320 — нет. Информация о платах и чипсетах есть на этой странице. Можно установить галочку Overclock, чтобы сразу видеть нужную информацию.
  • Платы для процессоров Intel на чипсетах Х- и Z‑серий позволяют без проблем разгонять процессоры с разблокированным множителем. Платы на чипсетах W-, Q-, B- и H‑серий разгон не поддерживают. Смотреть спецификации чипсетов Intel удобно здесь.

Кроме того, модели со словами Gaming, Premium и так далее обычно подходят для оверклокинга.

Рекомендуем обновить BIOS/UEFI материнской платы. Новую версию ПО и инструкции по установке можно найти на сайте производителя.

Уточните характеристики блока питания

Разгон потребует дополнительной энергии. Причём, если вы рассчитываете на 10% роста мощности процессора, ресурсопотребление вырастет не на 10%, а куда сильнее.

Вы можете воспользоваться калькулятором мощности BeQuiet и определить энергопотребление системы. А затем посмотреть на наклейку на блоке питания: если цифра там меньше рассчитанного значения или равна ему, стоит выбрать модель большей мощности.

Оцените систему охлаждения

Если у вас не слишком мощный, бюджетный кулер, то перед разгоном стоит установить модель большей производительности. Или перейти на водяное охлаждение: это недёшево, но значительно эффективнее единственного «вентилятора на радиаторе».

Всё дело в том, что с ростом рабочей частоты процессора тепловыделение повышается очень сильно. Например, когда Ryzen 5 2600 работает на частоте 3,4 ГГц, он выделяет около 65 Вт тепла. При разгоне до 3,8 ГГц — более 100 Вт.

Загрузите ПО для стресс‑тестов и оценки результатов разгона

Стресс‑тесты и бенчмарки помогут проверить стабильность конфигурации вашей системы после разгона. Такие функции есть в этих программах:

Другие бенчмарки можно найти, например, в Steam.

Сбросьте характеристики

Перед разгоном стоит сбросить все настройки в BIOS/UEFI до заводских — по крайней мере те, что касаются работы процессора. Как правило, комбинация клавиш для этого выводится на экран после входа в BIOS/UEFI.

Клавиша или их сочетание для входа в BIOS/UEFI обычно выводится при загрузке компьютера. Чаще всего это F2, F4, F8, F12 или Del. Нужно нажимать эти кнопки до загрузки системы. Если ни один из вариантов не подошёл, поищите комбинацию для своей модели материнской платы в Сети.

Также рекомендуем отключить Turbo Boost в BIOS/UEFI. Эта технология автоматически повышает характеристики процессора на высоких нагрузках, но её активация может повлиять на результаты разгона. Название конкретных пунктов зависит от модели вашей материнской платы и версии ПО для неё.

Не забудьте сохранить внесённые изменения перед выходом.

Как разогнать процессор в BIOS/UEFI

Алгоритм одинаковый и для процессоров Intel, и для AMD.

Определите исходные характеристики системы

Запустите один из бенчмарков (Cinnebench, Fire Strike, Time Spy, встроенные инструменты CPU‑Z, AIDA64 и так далее) в режиме для одного и всех ядер процессора и определите исходные характеристики системы. Например, Cinnebench выведет не только оценку вашей системы в баллах, но и сравнит её с популярными моделями процессоров.

У CPU‑Z аналитика проще, но эти баллы вы сможете использовать в качестве отправной точки для оценки эффективности разгона.

Также рекомендуем определить температуру процессора под нагрузкой. Эта информация выводится, например, в AIDA64 и некоторых бенчмарках.

Увеличьте один из параметров

В BIOS/UEFI найдите параметр CPU Core Ratio (CPU Ratio, название может отличаться в зависимости от версии ПО) и увеличьте его значение. Рекомендуем наращивать мощность постепенно, добавлять одну‑две единицы к множителю, чтобы риск выхода системы из строя был минимальным.

Сохраните настройки, и компьютер перезагрузится. Вы также можете наращивать производительность только для определённых ядер.

Посмотрите на результат после перезагрузки

Запустите тест в бенчмарке и оцените результаты: насколько повысилась производительность системы, стабильно ли она работает, как сильно нагревается процессор.

Максимально допустимую температуру для продуктов Intel ищите на этой странице: выберите семейство и модель процессора, найдите параметр T Junction.

На сайте AMD можно ввести модель процессора и посмотреть на значение максимальной температуры в характеристиках.

Повторите

Если система смогла загрузиться, продолжайте постепенно увеличивать значения CPU Ratio. Если после изменения параметров работа нестабильная, установите предыдущее значение.

Затем постепенно увеличивайте другие доступные параметры: CPU Core Voltage, CPU Cache/Ring Ratio, CPU Cache/Ring Voltage и так далее. Можно наращивать значения и попарно (частоту вместе с напряжением), чтобы быстрее добиться нужных результатов.

Параллельно следите за температурой процессора. Она должна быть стабильно ниже максимальных значений.

Проведите нагрузочный тест

Запустите бенчмарк и оставьте его работать на полчаса‑час. Желательно в это время находиться рядом с компьютером и следить за изменением показателей.

Если в какой‑то момент температура процессора достигнет критической отметки, система станет работать нестабильно или перезагрузится, сделайте ещё один шаг назад: уменьшите значения параметров в BIOS/UEFI и снова запустите бенчмарк на полчаса‑час.

Сравните результаты до и после разгона, чтобы узнать, насколько сильно выросла производительность вашей системы.

Как разогнать процессор с помощью утилит

Производители процессоров облегчили задачу оверклокерам и выпустили удобные программы для разгона.

Intel Performance Maximizer

Утилита для автоматического разгона разработана для процессоров Intel Core девятого поколения — моделей с индексом К: i9‑9900K, i9‑9900KF, i7‑9700K, i7‑9700KF, i5‑9600K, i5‑9600KF. Для её работы нужны от 8 ГБ оперативной памяти, от 16 ГБ свободного места на диске, материнская плата с поддержкой оверклокинга, улучшенное охлаждение и 64‑битная Windows 10.

Intel Performance Maximizer использует собственные тесты, чтобы подобрать оптимальные параметры для вашего процессора. Эксперименты проводятся отдельно для каждого ядра и порой длятся несколько часов, но затем вы сможете использовать найденную конфигурацию для максимальной производительности.

После установки достаточно запустить утилиту и нажать «Продолжить». Компьютер перезагрузится, запустится UEFI, там будут меняться параметры и проводиться тесты. По завершении процедуры вы увидите такое окно:

Скачать Intel Performance Maximizer →

Intel Extreme Tuning Utility

Утилита подходит для разгона процессоров Intel серий К и Х (конкретные модели перечислены на этой странице). Для корректной работы нужны 64‑битная Windows 10 RS3 или новее, материнская плата с поддержкой оверклокинга.

Работа с Intel Extreme Tuning Utility похожа на разгон процессора в BIOS/UEFI, но в более комфортном интерфейсе. Здесь есть и бенчмарк, и функции измерения температуры, и другие инструменты.

После установки вам нужно запустить утилиту, перейти на вкладку Basic Tuning и нажать Run Benchmark. Программа оценит производительность вашей системы до разгона и выдаст результат в баллах.

После этого вы можете постепенно увеличивать значения множителя для всех ядер процессора в разделе Basic Tuning или более тонко настроить параметры производительности на вкладке Advanced Tuning. Алгоритм один и тот же: увеличиваете на одну‑две единицы, запускаете бенчмарк, оцениваете результаты.

После того как вы достигли максимально возможных значений, перейдите на вкладку Stress Test. Пяти минут хватит для базовой проверки. Получасовой тест даст понять, не перегревается ли процессор под нагрузкой. А длящийся 3–5 часов позволит проверить стабильность системы, которая сможет работать с максимальной производительностью круглые сутки.

Скачать Intel Extreme Tuning Utility →

AMD Ryzen Master

Утилита для комплексного разгона: она может повысить не только производительность процессора, но также видеокарты и памяти. Здесь мы расскажем только о разгоне процессора с AMD Ryzen Master.

Отметим, что раньше производитель предлагал утилиту AMD Overdrive. Но она больше не поддерживается официально, а у AMD Ryzen Master гораздо шире возможности.

После запуска вы увидите компактное окно:

Здесь можно постепенно повышать значения CPU Clock Speed и CPU Voltage, затем нажимать Apply & Test, чтобы применить и проверить новые настройки.

Опция Advanced View позволяет менять значения отдельных параметров (напряжения и частоты ядер, частоты встроенной видеокарты, тайминга памяти) и сохранять их в виде профилей для разных игр и режимов работы.

Также есть функция Auto Overclocking для автоматического разгона системы.

Скачать AMD Ryzen Master →

Источник: https://Lifehacker.ru/kak-razognat-processor/

Как работает процессор и что важно знать?

Базовая тактовая частота

Процессор — сердце любого компьютера. Мы знаем, как он выглядит снаружи. Но интересно же — как он выглядит изнутри?

Intel® Core™ i7-1065G7, Ice Lake (10-е поколение), техпроцесс — 10 нм

Процессор состоит из миллиардов транзисторов сопоставимых по размеру с молекулой ДНК. Действительно размер молекулы ДНК составляет 10 нм. И это не какая-то фантастика! Каждый день процессоры помогают нам решать повседневные задачи. Но вы когда-нибудь задумывались, как они это делают? И как вообще люди заставили кусок кремния производить за них вычисления?

Сегодня мы разберем базовые элементы процессора и на практике проверим за что они отвечают. В этом нам поможет красавец-ноутбук — Acer Swift 7 с процессором Intel на борту.

Ядро процессора

Модель нашего процессора i7-1065G7. Он четырёхядерный и ядра очень хорошо видны на фотографии.

Каждое ядро процессора содержит в себе все необходимые элементы для вычислений. Чем больше ядер, тем больше параллельных вычислений процессор может выполнять. Это полезно для многозадачности и некоторых ресурсоемких задач типа 3D-рендеринга.

Например, для теста мы одновременно запустили четыре 4К-видео. Нагрузка на ядра рспределяется более менее равномерно: мы загрузили процессор на 68%. В итоге больше всего пришлось переживать за то хватит ли Интернет-канала. Современные процессоры отлично справляются с многозадачностью.

Почему это важно? Чтобы ответить на этот вопрос, давайте разберемся — как же работает ядро?

По своей сути ядро — это огромный конвейер по преобразованию данных. На входе загружаем одно, на выходе получаем другое. В его основе лежат транзисторы. Это миниатюрные переключатели, которые могут быть в всего в двух состояниях: пропускать ток или нет. Эти состояния компьютер интерпретирует как нули и единицы, поэтому все данные в компьютере хранятся в двоичном коде.

Можно сказать, что компоненты внутри компьютера общаются между собой при помощи подобия Азбуки Морзе, которая тоже является примером двоичного кода. Только компьютер отстукивает нам не точки и тире, а нолики и единички. Казалось бы, вот есть какой-то переключатель, и что с ним можно сделать? Оказывается очень многое!

Если по хитрому соединить несколько транзисторов между собой, то можно создать логические вентили. Это такие аналоговые эквиваленты функции “если то”, ну как в Excel. Если на входе по обоим проводам течет ток, то на выходе тоже будет течь или не будет или наоборот, вариантов не так уж и много — всего семь штук.

Но дальше комбинируя вентили между собой в сложные аналоговые схемы, мы заставить процессор делать разные преобразования: складывать, умножать, сверять и прочее.

Поэтому ядро процессора состоит из множества очень сложных блоков, каждый из которых может сделать с вашими данными что-то своё.

Прям как большой многостаночный завод, мы загружаем в него сырье — наши данные. Потом всё распределяем по станкам и на выходе получаем результат.

Но как процессор поймёт, что именно нужно делать с данными? Для этого помимо данных, мы должны загрузить инструкции. Это такие команды, которые говорят процессору:

  • это надо сложить,
  • это перемножить,
  • это просто куда-нибудь отправить.

Инструкций очень много и для каждого типа процессора они свои. Например, в мобильных процессорах используется более простой сокращённый набор инструкций RISC — reduced instruction set computer.

А в ПК инструкции посложнее: CISC — complex instruction set computer.

Поэтому программы с мобильников не запускаются на компах и наоборот, процессоры просто не понимают их команд. Но чтобы получить от процессора результат недостаточно сказать — вот тебе данные, делай то-то. Нужно в первую очередь сказать, откуда брать эти данные и куда их, собственно, потом отдавать. Поэтому помимо данных и инструкций в процессор загружаются адреса.

Память

Для выполнения команды ядру нужно минимум два адреса: откуда взять исходные данные и куда их положить.

Всю необходимую информацию, то есть данные, инструкции и адреса процессор берёт из оперативной памяти. Оперативка очень быстрая, но современные процессоры быстрее. Поэтому чтобы сократить простои, внутри процессора всегда есть кэш память. На фото кэш — это зелёные блоки. Как правило ставят кэш трёх уровней, и в редких случаях четырёх.

Самая быстрая память — это кэш первого уровня, обозначается как L1 cache. Обычно он всего несколько десятков килобайт. Дальше идёт L2 кэш он уже может быть 0,5-1 мб. А кэш третьего уровня может достигать размера в несколько мегабайт.

Правило тут простое. Чем больше кэша, тем меньше процессор будет обращаться к оперативной памяти, а значит меньше простаивать.

В нашем процессоре кэша целых 8 мб, это неплохо.

Думаю тут всё понятно, погнали дальше.

Тактовая частота

Если бы данные в процессор поступали хаотично, можно было бы легко запутаться. Поэтому в каждом процессоре есть свой дирижёр, который называется тактовый генератор. Он подает электрические импульсы с определенной частотой, которая называется тактовой частотой. Как вы понимаете, чем выше тактовая частота, тем быстрее работает процессор.

Занимательный факт. По-английски, тактовая частота — это clock speed. Это можно сказать буквальный термин. В компьютерах установлен реальный кристалл кварца, который вибрирует с определенной частотой. Прямо как в наручных кварцевых часах кристалл отсчитывает секунды, так и в компьютерах кристалл отсчитывает такты.

Обычно частота кристалла где-то в районе 100 МГц, но современные процессоры работают существенно быстрее, поэтому сигнал проходит через специальные множители. И так получается итоговая частота.

Современные процессоры умеют варьировать частоту в зависимости от сложности задачи. Например, если мы ничего не делаем и наш процессор работает на частоте 1,3 ГГц — это называется базовой частотой.

Но, к примеру, если архивируем папку и мы видим как частота сразу увеличивается. Процессор переходит в турбо-режим, и может разогнаться аж до 3,9 ГГц.

 Такой подход позволяет экономить энергию, когда процессор простаивает и лишний раз не нагреваться.

А еще благодаря технологии Intel Hyper-threading, каждое ядро делится на два логических и мы получаем 8 независимых потоков данных, которые одновременно может обрабатывать компьютер.

Что прикольно, в новых процессорах Intel скорость частот регулирует нейросеть. Это позволяет дольше держать турбо-частоты при том же энергопотреблении.

Вычислительный конвейер

Так как ядро процессора — это конвейер, все операции через стандартные этапы. Их всего четыре штуки и они очень простые. По-английски называются: Fetch, Decode, Execute, Write-back.

  1. Fetch — получение
  2. Decode — раскодирование
  3. Execute — выполнение
  4. Write-back — запись результата

Сначала задача загружается, потом раскодируется, потом выполняется и, наконец, куда-то записывается результат.

Чем больше инструкций можно будет загрузить в конвейер и чем меньше он будет простаивать, тем в итоге будет быстрее работать компьютер.

Предсказатель переходов

Чтобы конвейер не переставал работать, инженеры придумали массу всяких хитростей. Например, такую штуку как предсказатель переходов. Это специальный алгоритм, который не дожидаясь пока в процессор поступит следующая инструкция её предугадать. То есть это такой маленький встроенный оракул. Вы только дали какую-то задачу, а она уже сделана.

Такой механизм позволяет многократно ускорить систему в массе сценариев. Но и цена ошибки велика, поэтому инженеры постоянно оптимизируют этот алгоритм.

Микроархитектура

Все компоненты ядра, как там всё организовано, всё это называется микроархитектурой. Чем грамотнее спроектирована микроархитектура, тем эффективнее работает конвейер. И тем больше инструкций за такт может выполнить процессор. Этот показатель называется IPC — Instruction per Cycle.

А это значит, если два процессора будут работать на одинаковой тактовой частоте, победит тот процессор, у которого выше IPC.

В процессорах Ice Lake, Intel использует новую архитектуру впервые с 2015 года. Она называется Sunny Cove.

Показатель IPC в новой архитектуре аж на 18% на выше чем в предыдущей. Это большой скачок. Поэтому при выборе процессора обращаете внимание, на поколение.

Система на чипе

Естественно, современные процессоры — это не только центральный процессор. Это целые системы на чипе с множеством различных модулей.

ГП

В новый Intel больше всего места занимает графический процессор. Он работает по таким же принципам, что и центральный процессор. В нём тоже есть ядра, кэш, он тоже выполняет инструкции. Но в отличие от центрального процессора, он заточен под только под одну задачу: отрисовывать пиксели на экране.

Поэтому в графический процессорах ядра устроены сильно проще. Поэтому их даже называют не ядрами, а исполнительными блоками. Чем больше исполнительных блоков тем лучше.

В десятом поколении графика бывает нескольких типов от G1 до G7. Это указывается в названии процессора.

А исполнительных блоков бывает от 32 до 64. В прошлом поколении самая производительная графика была всего с 24 блоками.

Также для графики очень важна скорость оперативки. Поэтому в новые Intel завезли поддержку скоростной памяти DDR4 с частотой 3200 и LPDDR4 с частотой 3733 МГц.

У нас на обзоре ноутбук как раз с самой топовой графикой G7. Поэтому, давайте проверим на что она способна! Мы проверили его в играх: CS:GO, Dota 2 и Doom Eternal.

Что удобно — Intel сделали портал gameplay.intel.com, где по модели процессора можно найти оптимальные настройки для большинства игр.

В целом, в Full HD разрешении можно комфортно играть в большинство игр прямо на встроенной графике.

Thunderbolt

Но есть в этом процессоре и вишенка на торте — это интерфейс Thunderbolt. Контроллер интерфейса расположен прямо на основном кристалле, вот тут.

Такое решение позволяет не только экономить место на материнской плате, но и существенно сократить задержки. Проверим это на практике.

Подключим через Thunderbolt внешнюю видеокарту и монитор. И запустим те же игры. Теперь у нас уровень производительности ноутбука сопоставим с мощным игровым ПК.

Но на этом приколюхи с Thunderbolt не заканчиваются. К примеру, мы можем подключить SSD-диск к монитору. И всего лишь при помощи одного разъёма на ноуте мы получаем мощный комп для игр, монтажа и вообще любых ресурсоемких задач.

Мы запустили тест Crystalmark. Результаты вы видите сами.

Но преимущества Thunderbolt на этом не заканчиваются. Через этот интерфейс мы можем подключить eGPU, монитор, и тот же SSD и всё это через один кабель, подключенный к компу.

Надеюсь, мы помогли вам лучше разобраться в том, как работает процессор и за что отвечают его компоненты.

Источник: https://droider.ru/post/kak-rabotaet-protsessor-i-chto-vazhno-znat-30-06-2020/

Что такое центральный процессор?

Базовая тактовая частота

Персональный компьютер состоит из множества компонентов, соединенных в единую систему.

Взаимодействие и контроль между ними осуществляется благодаря центральному процессору, выполняет роль электронного мозга ПК.

Без него любая техника, будь то ноутбук, планшет или системный блок – груда железок. Давайте подробнее разберемся, как работает центральный процессор компьютера и какова его структура.

Виды процессоров

Прежде чем переходить к рассмотрению ключевых характеристик ЦП, необходимо разобраться каких видов он бывает. Центральных процессоров или CPU, как их называют заграницей много, и они разделяются по следующим критериям.

Мощности:

  • Бывают слабые, одноядерные модели, производство которых остановлено и приобрести их можно только после долгих поисков;
  • Средние и мощные модели, имеющие от 2 до 16 ядер;

По способу применения:

  • Игровые;
  • Серверные;
  • Бюджетные;

По фирме производителю:

  • Центральный процессор от компании Intel;
  • ЦП от компании AMD;

Обратите внимание! Помимо Интеловских и Амдэшных ЦП существуют продукты, выпускаемые под брендами других компаний, но они мало востребованы, составляя малую часть об общего объема товаров на рынке компьютерного железа.

Многие пользователи ошибочно полагают, что продукция компании Intel отличается от AMD только названием, но это далеко не так.

Структура каждого центрального процессора, произведенного под торговой маркой данных компаний, существенно отличается от конкурентов. Благодаря этому, они обладают своими достоинствами и недостатками.

Например, продукция компании Intel наделена следующими положительными характеристиками, выгодно отличающими их центральные процессоры от AMD:

  • Большинство производителей комплектующих изделий для ПК подгоняют свою продукцию под стандарты CPU от Intel;
  • Во время работы потребляют меньшее количество энергии, снижая нагрузку на систему;
  • Показывают большее быстродействие при работе с одной программой;
  • Лучший выбор для игровых сборок системных блоков;

Товары от AMD также имеют ряд характеристик, позволяющих им активно конкурировать на рынке компьютерного железа:

  • В отличии от ЦП производства Интел, центральные процессоры от АМД имеют функцию разгона, увеличивающую исходную мощность до 20%;
  • Лучшее соотношение цены и качества товаров;
  • Графические ядра, встроенные в ЦП, обладают большими возможностями чем Интеловские, позволяя быстрее работать с видео;

Описание центрального процессора

Итак, с видами ЦП и их отличительными особенностями мы разобрались, пора переходить к описанию самого изделия и разобраться в том, что это такое. Для простоты понимания разобьём его на несколько пунктов, выделяя в них ключевые особенности изделия:

  • Назначение ЦП;
  • Его строение;
  • Базовые характеристики;

С их помощью мы разберемся как работает процессор и как он устроен.

Назначение

задача любого центрального процессора – выполнение вычислительных процессов, с помощью которых устройствам передается набор команд, необходимых для выполнения. Команды находятся в ОЗУ ПК и считываются CPU оттуда напрямую. Соответственно, чем выше вычислительные мощности процессора, тем большим быстродействием обладает вся система.

Структура

Общая структура любого центрального процессора состоит из следующих блоков:

  • Блока интерфейса;
  • Операционного блока;

Блок интерфейса содержит следующие компоненты:

  • Адресные регистры;
  • Регистры памяти, в которых осуществляется хранение кодов передаваемых команд, выполнение которых планируется в ближайшее время;
  • Устройства управления – с его помощью формируются управляющие команды, которые в дальнейшем выполняются ЦП;
  • Схемы управления, отвечающие за работу портов и системных шин;

В операционный блок входят:

  • Микропроцессорная память. Состоит из: сегментных регистров, регистров признаков, регистров общего назначения и регистров подсчитывающих количество команд;
  • Арифметико-логическое устройство. С его помощью информация интерпретируется в набор логических, или арифметических операций;

Обратите внимание! Операционный блок и блок интерфейса работают в параллельном режиме, но интерфейсная часть находится на шаг впереди, записывая в блок регистров команды, которые в дальнейшем выполняются операционной частью.

Системная шина служит для передачи сигналов от центрального процессора к другим компонентам устройства. С каждым новым поколением структура процессора немного меняется и последние разработки сильно отличаются от первых процессоров, используемых на заре становления компьютерных технологий.

Характеристики

Характеристики любого центрального процессора оказывают большое влияние на быстродействие как отдельных элементов системы, так и всего комплекса устройств в целом. Среди основных характеристик, влияющих на параметры производительности, выделяют:

  • Тактовая частота; Для обработки одного фрагмента данных, передаваемых внутри ПК, требуется один такт времени. Отсюда следует, что чем выше тактовая частота приобретаемого ЦП, тем быстрее работает устройство обрабатывая за раз большие массивы информации. Измеряется тактовая частота в мегагерцах. Один мегагерц эквивалентен 1 миллиону тактов в секунду. Старые модели имели маленькую частоту, из-за чего скорость работы оставляла желать лучшего. Современные модели имеют большие показатели тактовой частоты, позволяя быстро обрабатывать и выполнять самые сложные наборы команд.
  • Разрядность; Информация, предназначенная для обработки ЦП, попадает в него через внешние шины. От разрядности зависит какой объем данных передается за один раз. Это влияет на быстродействие. Старые модели были 16 разрядными, а современные имеют 32 или 64 разряда. 64 разрядная система на сегодняшний день считается самой продвинутой и под нее разрабатываются современные программные продукты и устройства.
  • Кеш – память; Используется для увеличения работы устройства в компьютере, создавая буферную зону, хранящую копию последнего массива данных, обработанного процессором. Это дает возможность быстро выполнить схожую операцию в случае необходимости, без траты времени на обращение к общей памяти персонального компьютера.
  • Сокет; Вариант крепления устройства к материнской плате. Разные поколения процессоров, как и материнских плат имеют собственный поддерживаемых сокетов. Это стоит учитывать при покупке. У разных производителей сокеты также отличаются друг от друга.
  • Внутренний множитель частоты; Процессор и материнская плата работают на разных частотах и для их синхронизации друг с другом существует множитель частоты. Базовой или опорной считается рабочая частота материнской платы, которая умножается на персональный коэффициент ЦП.

Из побочных характеристик, напрямую не относящихся от технологии производства, выделяют тепловыделение и количество потребляемой во время работы энергии. Мощные устройства выделяют много тепла и требуют большую энергетическую подпитку во время работы. Для их полноценной работы применяются.

Так же вы можете прочитать статьи на темы: На что влияет частота процессора и Основные характеристики процессора

Источник: https://zen.yandex.com/media/wi_tech/chto-takoe-centralnyi-processor-5c4e92d337072100ad3105c0

Что такое Turbo Boost или Precision Boost, когда дело доходит до процессоров?

Базовая тактовая частота

Когда вы ищете новый компьютерный процессор для покупки, вы сталкиваетесь с техническими особенностями, такими как базовая тактовая частота процессора или скорость его повышения.

Вы задавались вопросом, что это значит? В то время как все процессоры имеют базовую тактовую частоту (рабочую частоту), которая находится в диапазоне нескольких гигагерц, современные процессоры также демонстрируют более высокие скорости турбобуста.

Если вы смотрите на процессоры AMD или Intel, все они демонстрируют свои часы с турбобустом. Вот что означает Turbo Boost, когда дело доходит до процессоров.

Какова тактовая частота процессора?

Сначала вы должны понять, что такое базовые часы процессора (CPU — Central Processing Unit). Базовая частота — это стандартная скорость процессора или рабочая частота. Он измеряется в гигагерцах и говорит вам, сколько миллиардов вычислений он может выполнить за одну секунду.

В первые дни компьютеров процессоры работали только на своих базовых тактовых частотах (частоте), что означало, что они имели фиксированную скорость, а не повышались или понижались. Это также означало, что сравнивать процессоры, чтобы выяснить, что было быстрее, было довольно легко.

В общем, процессор с более высокой тактовой частотой был быстрее, чем процессор с более низкой тактовой частотой.

Например, процессор с частотой 3 ГГц был быстрее, чем процессор с частотой 2,5 ГГц, хотя другие факторы, такие как архитектура процессора или объем кэш-памяти, могли изменить баланс.

Что такое процессор Turbo Boost Clock?

Современные процессоры, однако, также имеют множитель с турбобустом, что немного усложняет ситуацию. Что означает процессор с турбобустом? Что ж, и AMD, и Intel в настоящее время создают компьютерные процессоры, которые могут регулировать свою скорость в зависимости от того, что вы делаете. Турбобуст — это максимальная скорость, с которой процессор может работать.

Можно сказать, что процессоры, которые могут работать в режиме Turbo Boost, сами разгоняются без вашего вмешательства.

Например, процессор со стандартной базовой частотой 3,6 ГГц и тактовой частотой 4,6 ГГц, такой как Ryzen 7 3700X , может работать на частоте 4,6 ГГц, если вы используете требовательные приложения или игры, но работает только на 3,6 ГГц. в остальное время. Процессор самостоятельно повышает скорость.

Для того чтобы процессор достиг своей самой высокой частоты тактовых импульсов, необходимо выполнить несколько условий:

  • Питание: поскольку для более высокой скорости требуется больше энергии, ваша материнская плата должна обеспечивать питание, необходимое для того, чтобы процессор работал на частоте турбобуста.
  • Температура. Чем выше мощность, потребляемая процессором от материнской платы, тем больше процессор нагревается. Таким образом, процессор должен иметь хорошую систему охлаждения, которая может поддерживать температуру в диапазоне. В противном случае, если температура поднимется слишком сильно, процессор перейдет в режим дроссельной заслонки. Это означает, что он автоматически снижает частоту, чтобы защитить себя от повреждений, вызванных перегревом.
  • Использование: Чтобы достичь номинальной скорости турбобуста, у вашего процессора должна быть причина для этого. Если вашим приложениям или играм не нужна большая скорость, чем у базовых часов, у процессора нет причин увеличивать его до тактовых импульсов с турбобустом. Кроме того, если не все ядра вашего процессора активно используются, нет причин активировать Turbo Boost.

Кроме того, современные процессоры имеют более одного ядра, как правило, всего от 2 ядер до 16 ядер.

У вас может возникнуть соблазн думать, что заявленная для вашего процессора скорость турбобуста означает, что он может достичь этой максимальной частоты на всех своих ядрах, но это может быть не так.

Некоторые процессоры могут достичь его только на одном, двух или более ядрах, поэтому понимание того, что может предложить ваш процессор, еще сложнее.

Тем не менее, одна вещь, в которой вы можете быть уверены, это то, что по крайней мере одно из ядер вашего процессора может достичь скорости турбо-ускорения в любой момент времени. Наиболее распространенная ситуация заключается в том, что, когда многоядерный процессор достигает своих скоростей турбобуста на двух из своих ядер, но другие ядра используют более низкие тактовые частоты.

Производители называют Turbo Boost по-разному

Как у AMD, так и у Intel есть технологии, которые контролируют базовую частоту их процессоров и скорости турбобуста. Для своих последних серий компьютерных процессоров (Ryzen 2000 и Ryzen 3000) AMD называет его Precision Boost 2. Вы можете увидеть несколько деталей об этом на скриншоте ниже.

Начиная с Intel Core i5 и i7 второго поколения, Intel использует технологию Intel Turbo Boost v.2.0, а для новейших процессоров Core i7 и i9 — технологию Intel Turbo Boost Max v3.0.

Почему процессоры с турбобустом имеют преимущества?

Основным преимуществом такого процессора является то, что он ускоряет работу компьютера при большой нагрузке. Если вы запускаете видеоигру или требовательное приложение, ваш процессор автоматически увеличивает тактовую частоту наддува и обеспечивает максимальную производительность. Это означает лучшую производительность, когда это важно.

Кроме того, Turbo Boost — это полностью автоматический процесс : ваш процессор разгоняется сам, без какого-либо вмешательства с вашей стороны. Это просто работает, так что каждый получает выгоду, будь то домашний пользователь без опыта работы с компьютером или профессионал, который работает с корпоративными приложениями, требующими большой вычислительной мощности.

Как узнать, работает ли ваш процессор в режиме Turbo Boost?

Как вы видите, если ваш процессор работает в режиме Turbo Boost? Вы можете использовать специализированное приложение, которое может контролировать ваш процессор, например CPU-Z , или вы можете использовать диспетчер задач из Windows.

Если вы предпочитаете не использовать сторонние приложения, запустите диспетчер задач. Вы можете быстро открыть его, нажав клавиши Ctrl + Shift + Esc на клавиатуре. Затем перейдите на вкладку «Производительность» и выберите «CPU» в левой части окна.

Справа, под графиком использования, вы видите некоторые детали и информацию о вашем процессоре в режиме реального времени. Среди них «Базовая скорость» говорит вам, каков базовый множитель вашего процессора, а «Скорость» показывает текущую скорость.

Если значение скорости (2) превышает базовую скорость (1) , это означает, что ваш процессор работает в режиме турбобуста. Вот что мы видим, когда процессор AMD Ryzen 7 2700 работает в режиме Turbo Boost:

А вот пример процессора Intel Core i7-7700HQ от одного из наших ноутбуков:

Аналогично, сторонние приложения, такие как CPU-Z, могут показывать текущую скорость вашего процессора в режиме реального времени. Если вы используете требовательное приложение или игру, и текущая частота процессора выше, чем его базовая тактовая частота, как заявлено его производителем, это означает, что ваш процессор работает с турбобустом.

Какова скорость вашего процессора в режиме Turbo Boost или Precision Boost?

Нам любопытно узнать, какой процессор вы используете, и считаете ли вы, что скорость турбобуста является важным аспектом для общей производительности системы. Расскажите нам, что вы думаете о технологиях AMD Precision Boost и Intel Turbo Boost, в комментарии ниже.

Источник: https://ip-calculator.ru/blog/ask/chto-takoe-turbo-boost-ili-precision-boost-kogda-delo-dohodit-do-protsessorov/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.