Что такое ghz в процессоре

Содержание

Что такое центральный процессор?

Что такое ghz в процессоре

Наверное, каждый пользователь  мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным  в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом.

Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство).

На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD, которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП.

Суть заключается в том, что постоянное совершенствование методики изготовления позволяет  уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше.

Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс.

Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K  по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

 Архитектура

Также процессорам свойственно такая характеристика, как архитектура — набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д.

Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield).

С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ.

Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота. Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду.

Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера.

Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем, в который устанавливается ЦП на материнскую плату компьютера.

Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа.

Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш — объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти).

При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3), располагаясь непосредственно на ядре процессора.

В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом.

Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2.

Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса,  увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт.

Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра.

В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень.

Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора.

Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading.

Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ.

Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.).

Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Источник: https://MediaPure.ru/matchast/chto-takoe-centralnyj-processor/

Что такое процессор? Основные характеристики процессоров

Что такое ghz в процессоре

За время работы системный администратором мне не раз приходилось слышать от сотрудников нашего офиса вопросы, которые заставляли меня окунуться в “чертоги разума” или применить дедуктивные навыки, чтобы понять, о чем вообще идёт речь.

И один из таких вопросов “мой процессор перестал включаться” или его другая версия “я что-то нажал и мой процессор отключился”.

В это статье я хочу внести немного ясности и рассказать всем, что это вообще такое процессор и почему его не стоит путать с другими компонентами компьютера.

Процессор, что это вообще такое? Зачем он нужен? За какие задачи он отвечает?

Для большинства неопытных и технически неподготовленных пользователей процессором зачастую выступает весь системный блок в сборе. Но это относительно ошибочное суждение, процессор – это нечто, что сокрыто за стенками корпуса и толстым радиатором с вентилятором для его охлаждения.

Процессор или, как его еще называют, центральный процессор (Central Processing Unit) – это электронное устройство (интегральная схема), которое выполняет и обрабатывает машинные инструкции, код программ (машинный язык) и отвечает за все логические операции, которые протекают внутри вашей операционной системы и системного блока.

Без преувеличения, процессор можно назвать мозгом (или сердцем, это кому как больше нравится) любого компьютера, мобильного устройства или другого периферийного устройства. Да-да, слово процессор применимо не только к вашему системному блоку, но и планшету, смарт-холодильнику, игровой приставке, фотоаппарату и другой электронике.

Внешне процессор выглядит как квадратный (или прямоугольный) элемент или плата, в нижней части которой располагается контактная группа для подключения, в вверху находится сам кристалл процессора, который сокрыт под металлической крышкой, чтобы исключить возможность повреждения хрупкого кристалла процессора, а также крышка помогает при отводе тепла с поверхности кристалла на радиатор системы охлаждения.

Кристалл процессора состоит из кремния. Если точнее, полупроводники, из которых состоит процессор, производятся из кремния. На кремневой пластине кристалла в несколько слоёв располагается несколько триллиардов транзисторов (размер которых составляет порядка ~10 нм в зависимости от используемого техпроцесса при производстве), которые отвечают за все логические операции процессора.

На самом деле это только поверхностное описание того, из чего состоит процессор, и оно предназначено, скорее, для визуализации того, что из себя представляет процессор внутри. На самом деле все намного сложнее.

К сожалению, просто и доходчиво объяснить все принципы создания и работы процессора не так просто, здесь потребуются знания как элементарной алгебры, так и продвинутой физики и электротехники, да и большинству пользователей это попросту не нужно.

Впоследствии производители процессоров научились располагать на печатной плате, помимо самого кристалла процессора, кристалл видеоядра (видеокарты), что позволило исключить необходимость в отдельной дискретной видеокарте для вывода изображения на монитор.

Подводя итог этого блока статьи и что бы дать простой ответ на такой сложный вопрос “Что такое процессор (CPU)” — процессор это сердце любого современного устройства, которое выполняет все основные операции, будь то простое сложение 2+2, набор текста в Microsoft Word или расчет физической модели в Blender.

Теперь, когда всё стало немного понятнее и слово процессор у вас не ассоциируется с системным блоком, давайте совершим небольшой экскурс в историю и посмотрим, как появились процессоры и что вообще способствовало их появлению.

Первые ЭВМ (электронно-вычислительные машины) появились в 40-х годах прошлого века. Изначально в их основе использовались лампы и примитивные радиоэлементы по типу резисторов и реле. Размер таких ЭВМ мог достигать нескольких квадратных метров.

На фотографии изображена первая ЭВМ — ENIAC. Ее вес составлял порядка 30 тон, и внутри располагалось 18000 электронных ламп.

Но прогресс не стоит на месте, и в 50-х годах громоздкие электронные лампы сменили транзисторы, которые, в свою очередь, в 60-х годах были вытеснены интегральными микросхемами, которые вмещали в себя уже тысячи таких транзисторов.

Всё изменилось в 1971 году, когда компания Intel представила первую 4-битную однокристальную микросхему Intel 4004.

Именно Intel 4004 можно считать первым прародителем процессоров, нежели более ранние прототипы по типу электронных ламп и транзисторов.

После Intel 4004 индустрия развития стала шагать семимильными шагами, и каждый год инженерам и конструкторам удавалось разработать более современный микропроцессор, который был мощнее и производительней своего приемника.

Мы умышленно не будем перечислять огромный перечень процессоров в силу того, что это уже получится полноценная, отдельная статья про историю процессоров. Поверьте, там есть о чём рассказывать.

В 1993 году компанией Intel был представлен первый полноценный десктоп процессор первого поколения P5, который впоследствии был переименован в Pentium.

Но не стоит полагать, что двигателем прогресса была только компания Intel, свой вклад в индустрию электроники и центральных процессоров внесли такие компании, как Motorola, Zilog, MOS Technology, Sinclair Research (ZX Spectrum).

СССР тоже не отставали, и в 70-х годах Российские разработки в области ЭВМ вполне могли потягаться с зарубежными аналогами.

Но в силу того, что СССР перенаправила силы из этой области в другие отраслевые технологии, было принято решение отказаться от собственного производства и впоследствии использовать сертифицированные импортные технологии.

Хорошо. Теперь, когда мы знаем, что такое процессор и его краткую историю появления, нам нужно расставить все точки над i и разобрать еще одну не менее важную составляющую процессоров — характеристики и за что они вообще отвечают.

На текущий момент на рынке процессоров существует только два крупных игрока, которые постоянно конкурируют друг с другом как в плане технологий, так и за деньги в вашем кармане – AMD (Advanced Micro Devices) и Intel.

Мы не берём в расчет производителей, которые выпускают мобильные или другие узконаправленные процессоры, но в целях этичности их стоит упомянуть – МЦСТ (Эльбрус), Qualcomm, VIA Technologies, Samsung, Huawei и т. д.

Очень трудно говорить, кто лучше или процессор какого производителя вам стоит выбрать. Всё зависит от конкретных потребностей и ряда задач, которые будут выполняться на данном процессоре. Внести немного ясности в процесс выбора как производителя, так и процессора должна наша статья “Какой процессор лучше: AMD или Intel?”

Сокет – это разъем подключения (программный интерфейс) для установки центрального процессора на материнскую плату. На английском языке он называется Socket.

Сокет – это первый параметр, на который вам нужно обратить внимание при выборе центрального процессора. Существует большое количество сокетов и их модификаций.

Например, если у вас есть материнская плата с сокетом LGA 1151, то и процессор должен быть с сокетом LGA 1151, так как процессор с другим сокетом попросту невозможно установить в сокет материнской платы LGA 1151.

Такт – это промежуток времени между началом подачи текущего импульса ГТЧ (Генератор технической частоты) и началом подачи следующего.

Исторически сложилась, что тактовая частота измеряется в мегагерцах (для тысячных исчислений используются гигагерцы). Под тактовой частотой следует понимать количество тактов или вычислений в секунду. Следовательно, чем выше тактовая частота процессора, тем больше тактов (операций) в секунду может выполнить центральный процессор.

В качестве примера: центральный процессор с тактовой частотой 1 МГц обрабатывает 1 миллион тактов (операций) в секунду.

У процессоров существует параметр как базовой частоты, так и турбочастоты.

Базовая частота подразумевает частоту, с которой центральный процессор готов обрабатывать операций в стандартном режиме или при отсутствии интенсивной нагрузки.

Если базовой частоты становиться недостаточно, автоматически включается интерсивный (турборежим) режим работы, в котором за счет повышения напряжения, центральный процессор поднимает свою тактовую частоту до заявленных, максимальных значений, что позволяет увеличить общую производительности и скорость обработки команд (тактов).

Ядро – является самой главной частью процессора. Это своеобразный “мозг”, который обрабатывает все поступающие команды.

Ядро может обрабатывать только один поток команд, следовательно, если в процессоре есть два ядра, ОС может распараллелить поток команд, и ядра будут обрабатывать отдельные потоки команд, что увеличивает общую производительность.

Стоит отметить, чтобы процессор мог обрабатывать команды в нескольких потоках и на разных ядрах, сам код программы должен поддерживать многоядерность и многопоточность, в противном случае будет работать только одно ядро, и разницы в производительности вы попросту не увидите. К счастью, большинство современных приложений поддерживают и то, и другое.

Число потоков – это параметр, который отвечает за то, сколько потоков информации может обрабатывать одно ядро процессора.

В качестве примера: процессор Intel Core i3-4170 имеет 2 реальных физических ядра, каждое ядро способно обрабатывать команды в два потока, что при должной оптимизации со стороны программного обеспечения позволяет получить бюджетный аналог четырехъядерного процессора при наличии только двух физических ядер. К сожалению, не все модели процессоров имеют дополнительные потоки.

Кэш-память не менее важный параметр при выборе процессора, чем все остальные. Кэш-память это область энергозависимого ОЗУ (оперативное запоминающее устройство), в котором хранится информация, с которой центральный процессор работает в текущий момент или собирается работать в ближайшем будущем (или, возможно, уже отработал, но ему еще потребуется эта информация).

Использование кэш-памяти позволяет получить доступ к хранимой информации или командам мгновенно без участия в данном процессе оперативной памяти и связующей шины. Следовательно, чем больше кэш-памяти на различных уровнях имеет процессор, тем лучше.

Под словом “техпроцесс” следует понимать технологию, которая используется при производстве полупроводниковых элементов процессора. С уменьшением цифры техпроцесса уменьшается размер и толщина транзисторов, которые размещены в процессоре.

В качестве примера: AMD Ryzen 5 1600 имеет техпроцесс 12 нм, что, в свою очередь, означает, что размер используемых в нём транзисторов равен 12 нанометрам.

В процессе работы процессор выделяет различное количество тепла. Чтобы исключить возможность перегрева, конструкторами был добавлен уникальный для каждого процессора параметр “тепловыделение (TDP)”, с помощью которого можно рассчитать необходимое охлаждение для стабильной работы процессора.

Параметр “тепловыделение (TDP)” процессора означает, сколько ватт тепловой мощности выделяется при максимальной нагрузке на процессор. Например, заявленное тепловыделение AMD Ryzen 7 PRO 1700X равно 95 Вт, что означает, что вам потребуется охлаждение, которое сможет рассеять с поверхности процессора 95 Вт тепла.

Хоть многие и игнорируют этот параметр, но как минимум на него стоит обратить внимание и при выборе “горячего” процессора заложить в его стоимость соответствующий кулер, который сможет обеспечить должное охлаждение и поможет избежать чрезмерного нагрева и последующий переход в состояние троттлинга.

Троттлинг (от англ. throttling – удушение) – это естественный механизм защиты процессора, когда при интенсивной нагрузке он умышленно занижает свои рабочие параметры, чтобы избежать потенциального перегрева и, как следствие, выхода из строя.

Под определением разрядности следует понимать количество бит информации, которые центральный процессор может обрабатывать за один такт. Если размер данных за один цикл равен 1 байту, то процессор является восьмиразрядным (8 bit).

В случае если размер данных составляет 2 байта, такой процессор будет считаться шестнадцатиразрядным (16 bit).

Для тридцатидвухразрядного (32 bit) и шестидесяти четырех разрядного (64 bit) процессоров размер данных будет равен 4 и 8 байтам, соответственно.

Тогда почему все тридцатидвухразрядные процессоры обозначаются как x86? Давайте попробуем прояснить ситуацию – аббревиатура или набор инструкций x86 получен в наследство от процессора Intel i8086 и ряда последующих моделей процессоров, в именовании которых использовалось значение 86.

Хотелось бы добавить, что тридцатидвухразрядные процессоры (32 bit) и операционные системы (Windows x86) не поддерживают более 4 Гб оперативной памяти. В то время как шестидесяти четырех разрядный процессор (64 bit) и ОС могут использовать до 16 Тб оперативной памяти.

Конструкторы и разработчики процессоров научились умещать под защитной крышкой маленького процессора не только саму архитектуру процессора, но и отдельное графическое ядро, которое способно на аппаратном уровне имитировать внешнюю видеокарту.

И пусть интегрированное графическое ядро значительно уступает в производительности своим старшим братьям, внешним видеокартам, его производительности хватает, чтобы работать с большинством современных программ, к тому же такие интегрированные видеокарты вполне справляются с простыми и нетребовательными видеоиграми по типу Minecraft или Dota 2.

Стоит отметить, что не все модели процессоров имеют интегрированное графическое ядро, и если в ваш бюджет для сборки компьютера не входит покупка отдельной видеокарты, вам стоит обратить внимание на процессоры, которые имеют отдельное интегрированное графическое ядро, например AMD Athlon 3000G или Intel Celeron G5900.

Теперь, когда мы узнали все основы и четко понимаем, что такое тактовая частота и техпроцесс или почему количество ядер не стоит путать с количеством потоков, нам осталось выбрать подходящий центральный процессора для нашего компьютера.

К сожалению, здесь тоже всё не так просто.

Вот небольшой пример – если Intel Core i3-8100 будет идеальным решением для офиса (работа в Microsoft Office, 1С, почтовыми программами и т. д.), то он едва ли сможет обеспечить стабильный FPS в современных и требовательных играх.

Как не запутаться в таком обилии и разнообразии различных центральных процессоров и выбрать подходящий процессор именно вам? В этом сложном вопросе вам поможет наша статья “Как выбрать процессор для компьютера? Какой процессор лучше: AMD или Intel?”, в которой мы постарались доходчиво разобрать все основные моменты, связанные с выбором центрального процессора.

Источник: https://sysadmin.ru/articles/chto-takoe-processor

Процессор, CPU: характеристики центрального процессорного устройства

Что такое ghz в процессоре

Процессор, CPU — центральное процессорное устройство, «мозг» персонального компьютера, отвечает за обработку информации на основе организации вычислительных процессов согласно набору предустановленных команд.

Основные характеристики центрального процессора

На производительность (быстродействие) центрального процессора влияет широкий ряд параметров. Мы рассмотрим основные характеристики CPU, что касается остальных свойств продукта – они имеют глубокий технический подтекст.

Тактовая частота

Тактовая частота процессора измеряется в мега-, гигагерцах (МГц, ГГц) и подразумевает под собой количество тактов (вычислений) в секунду. Как правило, тактовая частота процессора, пропорциональна частоте шины (FSB). Чем выше тактовая частота процессора, тем выше его производительность. 1 МГц равен 1 миллиону тактов в секунду и соответственно 1 миллиард операций в секунду для 1 ГГц.

Частота шины

Тактовая частота (в МГц), с которой происходит обмен данными между процессором и системной шиной материнской платы (например, для загрузки/выгрузки данных из/в оперативную память).

Множитель

Коэффициент умножения, на основании которого производится расчет конечной тактовой частоты процессора, методом умножения частоты шины (FSB) на коэффициент (множитель).

Например, частота шины (FSB) составляет 200 МГц, а множитель равен 20, получаем тактовую частоту процессора: 200 * 20 = 4 ГГц. Путем изменения множителя, можно изменять рабочую частоту процессора.

Для этого материнская плата должна поддерживать разгон системы (overclocking), а процессор иметь разблокированный множитель (линейка Black Edition).

Разрядность

Разрядность (32/64 bit) — максимальное количество бит информации, которые процессор может обрабатывать и передавать одновременно.

Процессоры с поддержкой 64-bit способны адресовать свыше 4 Гб оперативной памяти, чего не могут 32-bit процессоры.

Но не стоит забывать о том, что для использования преимуществ 64-bit процессоров необходимо, чтобы операционная система «умела» работать с данным типом процессоров.

Кэш-память

Кэш-память первого уровня, L1 — это блок высокоскоростной памяти, который расположен на ядре процессора, в него помещаются данные из оперативной памяти. Сохранение основных команд в кэше L1 повышает быстродействие процессора, так как обработка данных из кэша происходит быстрее, чем при непосредственном взаимодействии с ОЗУ.

Кэш-память второго уровня, L2 — это блок высокоскоростной памяти, выполняющий те же функции, что и кэш L1, однако имеющий более низкую скорость и больший объем.

Интегрированная кэш-память L3 в сочетании с быстрой системной шиной формирует высокоскоростной канал обмена данными с ОЗУ. Кэш-память третьего уровня обычно присутствует в серверных процессорах или специальных линейках для настольных ПК.

Ядро

Определяет большинство параметров центрального процессора: тип сокета, диапазон рабочих частот и частоту работы FSB. Ядро процессора характеризуется следующими параметрами: техпроцесс, объем кэша L1 и L2, напряжение на ядре и тепловыделение. В рамках одной линейки могут существовать процессоры с разными ядрами.

Техпроцесс

Масштаб технологии (мкм), которая определяет размеры полупроводниковых элементов, составляющих основу внутренних цепей процессора.

Совершенствование технологии и пропорциональное уменьшение размеров элементов способствуют улучшению характеристик процессоров.             Для сравнения, у ядра Willamette, выполненного по техпроцессу 0.

18 мкм — 42 миллиона элементов, а у ядра Prescott, техпроцесс 0.09 мкм — 125 миллионов.

Напряжение

Этот параметр указывает напряжение (В), которое необходимо процессору для работы и характеризует энергопотребление. Параметр особенно важен при выборе процессора для мобильной, нестационарной системы.

Тепловыделение

Мощность (Вт), которую должна отводить система охлаждения, чтобы обеспечить нормальную работу процессора. Чем больше значение этого параметра, тем сильнее греется процессор при работе. Процессор с низким тепловыделением легче охлаждать, и, соответственно, его можно сильнее «разогнать».

Тип сокета

Разъём для установки процессора на материнской плате. Как правило, тип сокета характеризуется разным количеством ножек и зависит от производителя процессора. К примеру, современные процессоры Intel используют сокет LGA1156 и LGA1366, процессоры AMD — сокеты AM3, AM4 и FM2+.

P.S. При выборе процессора не стоит полагаться на его тактовую частоту. Производительность процессора зависит от ряда приведенных показателей.

Advanced Micro Devices, Inc. (AMD) — американский производитель интегрированной электроники, второй по величине производитель x86 и x64-совместимых процессоров, а также крупнейший поставщик графических процессоров, чипсетов для материнских плат и флеш-памяти.

Intel Corporation — американская корпорация, производящая широкий спектр электронных устройств и компьютерных компонентов, включая полупроводники, микропроцессоры, наборы системной логики (чипсеты) и др.

* может отличаться от тематики статьи

Источник: https://2hpc.ru/%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80/

Учи матчасть. Выбираем смартфон по процессору – Технологии Onliner

Что такое ghz в процессоре

Во времена мобильных телефонов, которые были «глупыми» и мало что, по нынешним меркам, умели, особого внимания начинке покупатель не уделял. Бо́льшую важность представляли внешний вид, объем памяти для записи телефонных номеров и SMS, позже — «навороты» в виде браузера, почтового клиента и тому подобные. Может, играла роль престижность модели.

Как это часто бывает, все изменила Apple, выпустив джинна из бутылки — оригинальный iPhone. Он дал начало новой моде на девайсы.

Хотя «яблочная» корпорация не была первой в сфере «умных телефонов» (ведь задолго до этого существовали IBM Simon, Nokia 9000 Communicator, Qualcomm pdQ 800 и другие), именно она смогла популяризовать направление — своим подходом, созданием должного образа и, что самое главное, экосистемы.

В бой ринулись многие, дав толчок развитию технологий, позволяющих нарастить мощность «телефонов» нового поколения — смартфонов в том виде, в котором мы привыкли их видеть. Постепенно мобильные устройства стали походить по своей производительности и возможностям на компьютеры, поэтому ожидания и требования к ним возрастали.

Сегодня рынок устоялся, основных игроков, выпускающих мобильные процессоры, не так много, к тому же они используют решение одной компании Аrm, подстраивая его под себя. Расскажем простыми словами, что это за зверь — мобильный процессор. А позже перейдем к другим компонентам смартфонов.

Коротко, о чем пойдет речь:

  • Процессор — CPU — является лишь одним из компонентов SoC. SoC, в свою очередь, — это набор, включающий в себя все необходимые узлы для обеспечения работы мобильного устройства.
  • Многоядерность процессоров позволяет увеличить производительность смартфонов и снизить энергопотребление.

  • Вычислительные ядра бывают разные: много — не обязательно хорошо.
  • Нанометровый техпроцесс: чем меньше цифра, тем лучше.
  • Троттлинг — защита от разрушения процессора и необходимость для повышения производительности.

  • Плохая оптимизация программной и аппаратной частей может привести к падению производительности даже самых топовых смартфонов и негативно сказаться на времени автономной работы.

  • Модное веяние: выделенный нейронный процессор, который применяется для обработки фото, идентификации юзера и предметов, создания сценариев и способен на еще более интересные вещи, о которых пользователь и не узнает.

Мобильный процессор, но правильнее — SoC

В отличие от домашнего компьютера, смартфон использует несколько иную логику: в случае с умными мобильниками процессором часто называют всю «систему на чипе» — SoC (System-on-a-Chip), или «систему на кристалле». Это набор компонентов, которые выполняют основные функции смартфона — от обработки данных, поступающих из всех источников, до подключения к беспроводным сетям и вывода картинки на экран.

То есть SoC — это собственно вычислительный процессор (CPU), «видеокарта» (GPU), модемы (3G, 5G и тому подобные), модули беспроводной связи (Wi-Fi, Bluetooth) и что угодно еще, но мы будем говорить именно о «процессоре», то есть об основном вычислительном компоненте. Отметим, что существуют и раздельные решения, когда тот или иной компонент не интегрирован, однако основной путь — «все вместе».

Какие мобильные процессоры самые-самые? Сейчас к актуальным и топовым относятся: Apple A13 Bionic для iPhone, Snapdragon 855 и 855 Plus для большинства Android-смартфонов, Helio G90, Exynos 990 для смартфонов Samsung, Kirin 990 для Huawei и Honor. Хотя те, что постарше на год-два, не особенно хуже, и средний юзер не ощутит разницы в производительности от слова «вообще».

Многоядерность, тактовая частота

Все адекватные производители смартфонов используют сегодня решения с многоядерными процессорами. Многоядерность позволяет эффективнее утилизировать ресурсы.

«Многоядерность — это плюс и минус одновременно»

Появляется возможность одновременного выполнения нескольких заданий (работа приложений в фоне). Кроме того, в одном CPU обычно компонуются как менее производительные ядра, так и более производительные с разной тактовой частотой. В восьмиядерном процессоре это могут быть «наборы» 4+4, 4+3+1 или другие в зависимости от производителя процессора и требований заказчика.

Нужно набрать SMS или посмотреть список дел? Задействованы «слабые» ядра с низкой частотой, нагрузка на батарейку минимальная.

Запустили игру? Включились «сильные» ядра, аккумулятор стал активнее терять заряд.

В жизни это означает, что один и тот же смартфон в руках мобильного геймера или любителя поснимать видео в 4K продержится часов пять, а у предпочитающего только звонки и SMS — двое суток.

Многоядерность — это плюс и минус одновременно. Наличие разных инструментов (ядер) позволяет сделать смартфон универсальным для разных задач.

Но в то же время нужно научить их работать правильно со всеми приложениями, а это получается не всегда.

Что выливается в проблемы, например, с производительностью (система не понимает, что нужно включить производительные ядра, и все «тупит») или утечкой энергии (работает все на максимуме, аж дым идет, когда не надо).

Ядра бывают разные

Производители смартфонов используют ядра (архитектуру), разработанные в компании Arm. Дизайн чипов при этом проектируют отдельно: Apple делает свое, Samsung, Huawei, Qualcomm и MediaTek — свое.

Одно и то же ядро (например, Cortex-A77 — самый актуальный вариант) может работать на разной частоте в зависимости от устройства и собственной модификации. Ядра объединяют в кластеры — те самые «наборы».

От дизайна зависит, сколько может быть ядер в одном кластере. Общее количество ядер в одном процессоре Android-смартфона обычно составляет восемь (в самых свежих iPhone — шесть).

«Количество ядер не указывает на производительность смартфона»

big.LITTLE, в свою очередь, расшифровывается просто: есть ядра более производительные (big) и менее производительные (little).

Смартфон должен обеспечить плавное переключение на лету между кластерами в зависимости от задач, выполняемых мобильником. Это сложно и иногда работает со сбоями. Логика инженеров Apple и их возможности немного иные.

Также есть и другие нюансы, объективно выделяющие «яблоко» из остальных (часто ли вы видели тормозящий iPhone?).

В качестве примера приведем флагманский процессор Snapdragon 855+ для Android-смартфонов.

Он использует чип с одним высокопроизводительным ядром до 2,84 ГГц, двумя производительными до 2,42 ГГц, построенными на базе Cortex-A76 (они же кастомные Kryo 485 Gold и Kryo 485 Gold Prime), и четырьмя энергосберегающими до 1,8 ГГц на базе Cortex-A55 (Kryo 485 Silver). Итог — три кластера под разную интенсивность работы.

И, как мы видим, ядра, базируясь на одной архитектуре, имеют модификации, что отражается на их тактовой частоте.

Еще один момент: количество ядер не указывает прямо на производительность смартфона. Поэтому восемь слабых ядер уступят компоновке из четырех мощных и четырех малопроизводительных.

Важно также, как производитель позиционирует смартфон. Поэтому заморачиваться по поводу того, какой процессор установлен в свежем флагмане, особенно не стоит: наверняка там будет адекватное решение (актуально для зарекомендовавших себя брендов).

Какие-то нанометры

«У вас будет 7-нанометровый процессор!» Речь о размерах транзисторов, из которых «собран» CPU. Чем меньше цифра, тем в теории лучше. Когда-то в смартфоны устанавливали 64-нанометровые процессоры, сейчас мейнстримом становится 7 нанометров, однако есть также 8-нанометровые, 10-нанометровые и более «крупные» для смартфонов подешевле и постарше.

Представьте, что на одну и ту же площадь можно установить больше маленьких транзисторов, повысив тем самым общую вычислительную мощность. К тому же они нагреваются меньше, что позволяет еще больше увеличить производительность.

К примеру, 7-нанометровый чип будет производительнее 14-нанометрового при том же напряжении на четверть или таким же по производительности при вдвое сниженном напряжении (и батарея сядет позже).

Но есть нюанс, связанный с маркетингом (куда без него): производители могут использовать разные способы подсчета нанометров и производительности, так что эти цифры носят отчасти условный характер, из-за чего прямое сравнение возможностей процессоров от разных компаний не всегда возможно.

Троттлинг

Обычно троттлинг означает чрезмерный нагрев процессора, после которого тот снижает частоту и заметно теряет в производительности. Это механизм защиты, придуманный для того, чтобы сохранить целостность CPU в критической ситуации. Отчего случается «плохой троттлинг»?

«Если система отвода тепла не продумана, гигагерцы не помогут»

Например, из-за желания производителя смартфона «разогнать» ядра процессора, не обеспечив эффективного охлаждения и/или не проведя оптимизацию ПО и других «железных» компонентов.

Или чтобы набрать больше баллов в тестах, рекламируя свой телефон как «самый мощный». А еще из-за желания вендоров идти по грани, удерживая максимальную производительность долгое время.

По большому счету троттлинг в смартфонах неизбежен, но с ним можно управиться, и чем труднее процессору добраться до точки кипения, тем он эффективнее.

В спецификациях к мобильнику можно заявить о частоте в 2,5 ГГц на все восемь ядер, производительность будет «доказана» в синтетических тестах.

В реальности же смартфон не будет справляться с играми или тяжелыми приложениями: первые пару минут все будет хорошо, затем последует сильный нагрев из-за попыток CPU выдавить из себя условные 2,5 ГГц, появятся «фризы», «тормоза», аппарат будет неприятно горячим и станет бесполезным — если система отвода тепла не продумана, а ПО работает плохо.

Оптимизация программной и аппаратной частей

Лучше всего обстоят дела у процессоров Apple серии A. Компании не приходится распыляться на сонм моделей, ОС полностью своя, приложения пишутся под ограниченный набор устройств, а не тысячи разных.

А некоторые известные компании переболели «детской болезнью»: Huawei настрадалась с Kirin, например, то и дело возникают вопросы к фирменному чипу Samsung Exynos, что подталкивает некоторых покупателей искать смартфоны Samsung на базе Snapdragon. MediaTek постепенно исправляется.

Можно использовать самые последние технологии и техпроцессы, но не достичь гармонии: процессор считается идеальным в проекте, уделывает остальных в тяжелых приложениях, набирает уйму баллов в тестах, а потом не справляется с собственной программной оболочкой.

Нейронный процессор

Как говорилось в самом начале, процессор как отдельная единица в смартфонах обычно не рассматривается. Ведь, помимо основного, есть дополнительные.

Из тех, что стали «модными» в последнее время, — нейронные процессоры (NPU). Технология может называться по-разному, но такие процессоры призваны выполнять сходные ресурсоемкие задачи ИИ, не задействуя GPU и CPU.

Например, они могут распознавать лицо хозяина и предметы, определять сценарии использования мобильного устройства и работать согласно им, генерировать уникальные эмодзи и обрабатывать фото.

На самом деле речь идет о более широком спектре задач, но о них пользователь не узнает.

Мобильники с NPU обычно помечены как оснащенные искусственным интеллектом — AI (Apple так не делает, хотя ее «нейронный движок» используется начиная с чипа A11 Bionic). Вероятно, в той или иной мере нейронные сети, машинное обучение и зрение интегрированы во все современные SoC, за исключением совсем бюджетных (но и это вопрос времени).

За что еще отвечает процессор?

За все в смартфоне: мегапиксели в камере, разрешение экрана, проигрывание видео, объем оперативной памяти, поддержку сетей связи и даже скорость зарядки аккумулятора. Но обо всем этом и многом другом расскажем в следующий раз.

Продолжение следует.

Источник: https://tech.onliner.by/2021/03/11/processory-3

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.